edexcel

Mark Scheme (Results)
Summer 2012

GCSE Chemistry $5 \mathrm{CH} 2 \mathrm{H} / 01$

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UG033048
All the material in this publication is copyright
© Pearson Education Ltd 2012

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{1 (a)}$	An explanation including the following points				
- metal (1)					
- because \{on left of / below\}					
the line dividing metals and					
non-metals/because boron					
only non-metal in group 3					
(1)				\quad	correct statement relating to
:---					
neighbouring metallic elements	\quad surrounded by metals \quad (2)				
:---					

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b)}$	2.8 .3	283	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c) (i)}$	A five protons		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{1 (c) (i i)}$	An explanation including the following points				
• atoms of same element /					
same \{number of protons /					
atomic number\} (1)				\quad ignore electrons	different \{numbers of
:---					
neutrons / mass numbers\}					
(1)	\quad	(2)			
:---					

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c) (i i i)}$	more atoms have mass 11 (than $10) /$ ORA	boron 11 isotope more abundant OWTE	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i)}$	D electrons		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i i)}$	transition (metals/ elements)	transitional ignore transient	(1)

Question Number	Answer	Acceptable answers	Mark
2(b)	An explanation linking the following points		
hydrogen chloride \{soluble/dissolves\} (in water) (1)	hydrogen chloride reacts with water	(2)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (c)}$	An explanation including two of the following points		
	(orange) colour due to bromine (1)	chlorine displaces bromine (1) (because) chlorine is more reactive (than bromine) (1)	chlorine displaces bromide (ions) a displacement reaction (occurs)OWTE

Question Number	Answer	Acceptable answers	Mark
2(d)	A description including three of the following points		
	- mix solutions (1) - wash (precipitate / solid) with water (1)	pour (both) solutions into \{beaker/other suitable container ignore addition of hydrochloric acid	- dry (precipitate / solid) in oven /leave to dry(1)
	if wrong things mixed allow max 2 from last three points	(3)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a)}$	C oxidation		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (b) (i)}$	An explanation linking the following points - large(r) surface area (1)	large(r) \{surface /area\}	
more frequent collisions with catalyst / reaction will go faster (1)OWTE	more collisions	(2)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (b) (i i)}$	An explanation linking the following points	gas (particles) \{move faster/more energy\}	
	(1)\{reactions faster / catalyst works better\} when hotter (1)	(2)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (c)}$	$2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$	allow multiples	
\bullet LHS formulae (1)			
	• RHS formula (1) (1)		(3)

Question Number	Answer	Acceptable answers	Mark
3(d)	An explanation linking the following points • heat energy \{ given out / of reactants higher than products\} / ORA (1)	ignore bond making and breaking	
• (so) exothermic (1)			

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (a) (i)}$	$\mathbf{C ~ C u C l}$		
2		$\mathbf{(1)}$	

Question Number	Answer	Acceptable answers	Mark
4(a)(ii)	An explanation linking the following points Either - the amount of product calculated (1) - using the equation (for the reaction) (1) Or - the maximum amount of \{product / copper chloride\} (1) - when all \{reactant / copper\} reacts (1)	using reacting masses amount of product when all \{reactant / copper\} reacts (2)	(2)

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{4 (b) (i)}$	$2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{FeBr}_{3}(\mathrm{~s})$				
reactant formulae (1)					
balancing correct formulae					
(1)					
state symbols (1)					
s and g must be lower case				\quad	allow state symbol mark even if
:---					
other marks not awarded	\quad (3)				

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	$56+(3 \times 80)(1)$ $=296$	give full marks for correct answer with no working	(1)

Question Number	Answer	Acceptable answers	Mark
4(b)(iii)	ratio: $56 / 310(1)$	any number/310 $\times 100(\%)$	
	$\%$ iron $56 / 310 \times 100(\%)(1)$	$18.06 / 18.1$ give full marks for correct answer with no working	(2)

Question Number	Answer	Acceptable answers	Mark
4(b)(iv)	HO	$\mathrm{OH}, \mathrm{O}_{1} \mathrm{H}_{1}, \mathrm{H}_{1} \mathrm{O}_{1}$	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i)}$	shared pair of electrons (between two atoms)	two shared electrons reject between two or more atoms	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i i)}$	D it has a low boiling point		(1)

Question Number	Answer	Acceptable answers	Mark
5(b)	An description including three of the following points - cool (to about $-200^{\circ} \mathrm{C}$) / liquefy (air) (1) - fractional distillation (1) - allow to warm / heat (1) - \{nitrogen / lower boiling point obtained from top of column (1) - \{oxygen / higher boiling point \} obtained from bottom of column (1)	mention of fractionating column/ fractionation ignore state of nitrogen ignore state of oxygen can be separated because they have different boiling points(1) alternative to last two points	(3)

Question Number		Indicative content	Mark
QWC	*5(c)	An explanation linking some of the following points - carbon atoms joined by covalent bonds - each carbon atom bonded to three others - carbon atoms in hexagonal arrangement - layers - weak forces between layers - layers can slide (hence lubricant) - free electrons between layers - free electrons can move - and carry current (hence conduction of electricity)	
Level	0	No rewardable content	
1	1-2	- a limited explanation e.g. the layers (of atoms) slide so used as lubricant - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, puncuation and grammar are used with limited accuracy	
2	3-4	- a simple explanation e.g. the layers slide so used as lubricant and free electrons moveso conducts - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately - spelling, puncuation and grammar are used with some accuracy	
3	5-6	- a detailed explanation e.g. there are free electrons between the layers and these move to carry the current and weak forces between the layers allow them to slide over one another easily hence lubricant - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately - spelling, puncuation and grammar are used with few errors	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (d)}$	electrode / brush electric motor / HT leads		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (b) (i)}$	$\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{AgCl}$		
\bullet reactant formulae (1)	$\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{AgCl}$		
ignore state symbols			
- product formulae (1)	do not give (2) if incorrectly balanced	(2)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (b) (i i)}$	D to remove other ions that would also form a white precipitate		(1)

Question Number		Indicative content	Mark
QWC	*6(c)	An explanation linking some of the following points For a sample to conduct electricity - charged particles must be present - they must be free to move water does not conduct because it - is (simple molecular) covalent - exists as molecules - contains no/(very few) charged particles solid sodium chloride does not conduct because - although it contains ions / cations / anions - which are charged particles - they are not free to move - because they are held together - by strong - electrostatic forces/ ionic bonds - in lattice sodium chloride solution conducts because - ions / cations / anions are present - which are charged particles - they are free to move - because the water has cut down the forces between the ions - ions have separated - move to electrode of opposite charge	(6)
Level	0	No rewardable content	
1	1-2	- a limited explanation e.g. water is covalent and sodium chlorid ionic - the answer communicates ideas using simple language and us limited scientific terminology - spelling, puncuation and grammar are used with limited accur	
2	3-4	- a simple explanation e.g. water is covalent and does not cond because there are no charged particles: sodium chloride is ion therefore solution conducts because ions move - the answer communicates ideas showing some evidence of cla and organisation and uses scientific terminology appropriately - spelling, puncuation and grammar are used with some accura	
3	5-6	- a detailed explanation e.g. in solid sodium chloride the ions are in a lattice by strong forces but in sodium chloride solution the are free to move: water is covalent so contains no charged pa - the answer communicates ideas clearly and coherently uses a of scientific terminology accurately - spelling, puncuation and grammar are used with few errors	held ions ticles range

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG033048 Summer 2012

For more information on Edexcel qualifications, please visit our website
 www.edexcel.com

Rewarding Learning

